Dielectric Properties of Ethane-1,2-diol + 2-Methoxyethanol + Water Liquid Ternary Mixtures

Fulvio Corradini, Massimo Malagoli, Luigi Marcheselli, Andrea Marchetti, Lorenzo Tassi," and Giuseppe Tosi
Department of Chemistry, University of Modena, via G. Campi, 18341100 Modena, Italy

The dielectric properties of ethane-1,2-diol (1) +2 -methoxyethanol (2) + water (3) were measured in the range $30 \leq t /{ }^{\circ} \mathrm{C} \leq 50$ and for 66 ternary mixtures covering the whole miscibility field ($0 \leq x_{1} / x_{2} / x_{3} \leq 1$). The ϵ values were analyzed by some empirical equations based on the pure-component properties for the ternaries studied. A comparison of the experimental and calculated data shows that the selected equations can be safely employed to predict the dependence of ϵ on the temperature and on the composition of the systems studied when binary and/or ternary experimental data are not available.

Introduction

The dielectric constant is an important property of matters and of liquids in particular, in connection with the transport phenomena in solution and through biological membranes, responsible for particle solutes orientation and related to the structural order degree in solution. The dielectric properties of the liquid mixtures seem of particular interest for both theoretical and practical reasons.

In general, they cannot be predicted from the dielectric constants of individual components, and the solution of this problem seems to be very far, in spite of several models that have been proposed (1-3).

Among other purposes, the dielectric constant may be a useful tool for studying intermolecular interactions in real systems. Furthermore, in the literature it has been reported that the dielectric constant is useful in the determination of the stoichiometry of stable adducts in binary solvent mixtures $(4,5)$. However, very few works appeared in the past about ternary, or higher, liquid mixtures. Therefore, initially we have planned some investigations about the dielectric behavior of the ethane-1,2-diol (ED, component 1) + 2-methoxyethanol (ME, component 2) + water (W, component 3) solvent system in order to provide as much information as possible on the molecular interactions between unlike species.

It should be noted that all three pure species selected for this study are very polar molecules ($\mu_{\mathrm{ED}}=2.28 \mathrm{D}, \mu_{\mathrm{ME}}=2.36$ $\mathrm{D}, \mu_{\mathrm{W}}=1.85 \mathrm{D}$) and amphyprotic in nature.

The pure solvents and their binaries, obtained by mixing each component with each other, have been utilized in the past as potentially useful media for electrochemical investigations on ionization and dissociation reactions in solution (6-9). In an extension of our research about the electrolytic behavior into the ternary solvent mixtures, we are recording the experimental measurements on the thermomechanical properties of the above-mentioned ternaries.

Experimental Section

Materials. The solvents ethane-1,2-diol and 2-methoxyethanol (containing $<0.10 \%$ and $<0.05 \%$ by mass of water, respectively, as found by Karl-Fischer titrations) were highpurity grade reagents from Carlo Erba (Milan). These solvents were stored over 3-Å molecular sieves for many days before use, and the final purity was checked by gas chromatography ($99.5 \% \mathrm{ED}$ and $99.7 \% \mathrm{ME}$), confirming the absence of other significant organic components. Water for
mixture preparation was deionized by a MilliQ-Plus apparatus (Millipore) and has a specific conductance $\leq 0.70 \mu \mathrm{~S}$ at $25^{\circ} \mathrm{C}$, measured at a frequency of 1 kHz .

Apparatus and Procedures. The mixtures were prepared just before use by weight on a Mettler PM 4800Δ-range balance, operating in a drybox to avoid atmospheric moisture. The binaries without water were preserved on 3- \AA molecular sieves. The probable error on each mole fraction x_{1}, x_{2}, and x_{3} is estimated to be less than 1.5×10^{-4}.

Dielectric constant measurements were carried out at 2 MHz , by the heterodyne beat method, with a Wissenschaftli-ch-Technischen Werkstätten (WTW) GMBH dipolmeter, model DM01. The thermostated stainless steel measuring cells were MFL $2(7 \leq \epsilon \leq 21)$ and MFL $3(21 \leq \epsilon \leq 90)$ types. The sample cells are of the covered coaxial capacitor type with vacuum capacitances of 2 pF (MFL 2) and 0.5 pF (MFL 3). They are adequate to cover the dielectric constant range of $\mathrm{ED}+\mathrm{ME}+\mathrm{W}$ mixtures over the whole investigated composition range. It was checked that a good overlap was obtained when passing from the MFL 2 to MFL 3 measuring cell, the difference lying always within the experimental accuracy of the equipment. The cells were calibrated with standard pure liquids, such as dichloromethane, pyridine, 1-butanol, and acetone (MFL 2) and methanol, ethanol, glycerol and bidistilled water (MFL 3). With the exception of the bidistilled water, all these solvents were spectrograde quality, or better. The dielectric constants for the standards were taken from the literature (10).

In all the cases, the experiments were generally performed at least for 10 replicate runs for each composition and at each temperature, and the results were averaged. The reproducibility of measurements (standard deviation $\sigma(\epsilon)$) was approximately equal to $\pm 0.2 \%$, and the accuracy was $\pm 2 \times 10^{-3}$, with a confidence interval of 95%.

The thermostated measuring cell was encased in a polyurethane protective jacket, and the temperature control was provided by a Lauda K2R thermostatic bath maintained to $\pm 0.02{ }^{\circ} \mathrm{C}$.

The temperature constance was checked by a thermoresistance Pt 100 (Tersid, Milan) immersed into the measuring cell, and by collecting the resistance values with a Wayne Kerr 6425 precision component analyzer.

Karl-Fischer titrations were performed with an automatic titration system (Crison Model KF 431) equipped with a digital buret (Crison Model 738).

Table I. Ternary Composition and Dielectric Constants of Ethane-1,2-diol (1) + 2-Methoxyethanol (2) + Water (3)

		ϵ					x_{1}	x_{2}	ϵ				
x_{1}	x_{2}	$30^{\circ} \mathrm{C}$	$35^{\circ} \mathrm{C}$	$40^{\circ} \mathrm{C}$	$45^{\circ} \mathrm{C}$	$50^{\circ} \mathrm{C}$			$30^{\circ} \mathrm{C}$	$35^{\circ} \mathrm{C}$	$40^{\circ} \mathrm{C}$	$45^{\circ} \mathrm{C}$	$50^{\circ} \mathrm{C}$
1.0000	0.0000	39.95	38.89	37.99	36.98	36.07	0.1513	0.0705	57.44	55.95	54.65	53.30	51.99
0.9272	0.0728	37.41	36.60	35.57	34.80	33.76	0.1342	0.0312	62.90	61.26	59.92	58.43	57.09
0.7442	0.0000	44.90	43.88	42.68	41.60	40.62	0.1213	0.0000	68.35	66.87	65.30	63.69	62.30
0.8499	0.1501	35.11	34.28	33.36	32.57	31.65	0.2614	0.7386	20.55	19.94	19.38	18.79	18.29
0.6760	0.0601	42.62	41.67	40.52	39.49	38.47	0.1916	0.4634	30.08	29.27	28.40	27.62	26.87
0.5638	0.0000	49.56	48.45	47.09	46.05	44.79	0.1618	0.3411	36.20	35.26	34.35	33.39	32.51
0.7676	0.2324	32.68	31.99	31.09	30.31	29.41	0.1362	0.2394	42.68	41.63	40.72	39.53	38.67
0.6053	0.1243	40.34	39.44	38.32	37.35	36.42	0.1208	0.1635	49.40	48.10	46.98	45.70	44.51
0.4952	0.0589	46.99	45.79	44.61	43.59	42.38	0.1018	0.1071	55.53	54.02	52.82	51.45	50.03
0.4274	0.0000	53.92	52.60	51.39	50.10	48.73	0.0959	0.0634	60.78	59.28	57.85	56.37	55.01
0.6798	0.3202	30.43	29.59	28.81	28.01	27.34	0.0822	0.0285	65.61	63.81	62.28	60.68	58.96
0.5296	0.1903	38.09	37.12	36.20	35.23	34.35	0.0749	0.0000	70.75	68.90	67.42	65.69	64.19
0.4422	0.1044	45.08	43.92	42.79	41.82	40.62	0.1359	0.8641	18.66	18.11	17.75	17.18	16.82
0.3756	0.0447	51.72	50.45	49.12	47.88	46.65	0.1138	0.5655	26.84	26.01	25.44	24.68	23.94
0.3267	0.0000	57.84	56.49	55.06	53.76	52.34	0.0871	0.4011	34.29	33.40	32.43	31.54	30.77
0.5860	0.4140	28.00	27.34	26.60	25.95	25.20	0.0732	0.2915	40.81	39.62	38.73	37.54	36.74
0.4554	0.2595	35.79	34.89	33.97	33.19	32.29	0.0599	0.2083	47.34	45.95	44.90	43.68	42.59
0.3692	0.1647	42.75	41.78	40.61	39.57	38.55	0.0549	0.1459	53.23	51.74	50.53	49.11	47.99
0.3198	0.0850	50.07	48.77	47.60	46.47	45.32	0.0457	0.0971	58.89	57.48	55.92	54.67	53.19
0.2755	0.0405	55.63	54.27	52.96	51.72	50.42	0.0393	0.0590	63.85	62.27	60.67	59.15	57.48
0.2432	0.0000	61.32	59.99	58.41	57.04	55.73	0.0366	0.0265	68.56	66.95	65.46	63.72	62.09
0.4855	0.5145	25.50	24.88	24.21	23.54	22.96	0.0346	0.0000	73.55	71.63	70.03	68.25	66.56
0.3668	0.3273	33.86	32.93	32.06	31.27	30.41	0.0000	1.0000	16.54	16.17	15.76	15.38	15.02
0.3038	0.2193	40.73	39.74	38.75	37.76	36.81	0.0000	0.6756	23.52	22.89	29.21	21.52	20.77
0.2583	0.1388	47.43	46.23	44.95	43.81	42.80	0.0000	0.4792	32.18	31.39	30.60	29.68	28.81
0.2220	0.0816	53.55	52.24	50.97	49.76	48.45	0.0000	0.3494	38.08	37.26	36.22	35.16	34.23
0.1956	0.0360	59.41	58.09	56.52	55.19	53.79	0.0000	0.2564	44.76	43.69	42.42	41.35	40.22
0.1775	0.0000	64.93	63.39	61.92	60.31	58.97	0.0000	0.1865	50.81	49.40	48.12	46.68	45.36
0.3776	0.6224	23.00	22.22	21.69	20.99	20.45	0.0000	0.1327	56.96	55.42	54.20	52.77	51.56
0.2889	0.4101	31.16	30.37	29.60	28.79	27.94	0.0000	0.0892	59.42	57.65	55.84		
0.2367	0.2797	38.37	37.34	36.35	35.53	34.50	0.0000	0.0545	64.67				
0.1970	0.1873	45.24	44.07	43.05	41.95	40.77	0.0000	0.0249	70.76	68.86	67.01	65.25	63.55
0.1694	0.1189	51.86	50.44	49.27	48.06	46.84	0.0000	0.0000	76.56	74.80	73.23	71.46	70.00

Table II. Coefficients α_{i} and Standard Deviations $\sigma(\ln \epsilon)$ of Equation 1 for Ethane-1,2-diol (1) + 2-Methoxyethanol (2) + Water (3)

x_{1}	x_{2}	α_{0}	$10^{3} \alpha_{1}$	$10^{3} \sigma(\ln \epsilon)$	x_{1}	x_{2}	α_{0}	$10^{3} \alpha_{1}$	$10^{3} \sigma(\ln \epsilon)$
1.0000	0.0000	5.23186	-5.09518	0.92	0.1513	0.0705	5.55517	-4.964 24	0.70
0.9272	0.0728	5.17425	-5.114 94	2.5	0.1342	0.0312	5.60222	-4.821 23	1.1
0.7442	0.0000	5.34510	-5.07953	1.3	0.1213	0.0000	5.64478	-4.682 47	0.90
0.8499	0.1501	5.13000	-5.18054	1.4	0.2614	0.7386	4.80151	-5.868 11	1.1
0.6760	0.0601	5.32307	-5.17655	1.4	0.1916	0.4634	5.12223	-5.66805	0.89
0.5638	0.0000	5.44129	-5.070 30	1.8	0.1618	0.3411	5.22515	-5.395 38	0.68
0.7676	0.2324	5.09474	-5.295 65	2.4	0.1362	0.2394	5.26262	-4.976 40	1.9
0.6053	0.1243	5.26764	-5.17623	1.5	0.1208	0.1635	5.47363	-5.190 71	1.1
0.4952	0.0589	5.39922	-5.11109	1.2	0.1018	0.1071	5.57821	-5.15056	1.6
0.4274	0.0000	5.51089	-5.022 92	1.5	0.0959	0.0634	5.62340	-5.000 97	0.43
0.6798	0.3202	5.04867	-5.389 67	1.2	0.0822	0.0285	5.78370	-5.278 45	1.3
0.5296	0.1903	5.20977	-5.17781	0.51	0.0749	0.0000	5.72883	-4.850 50	1.2
0.4422	0.1044	5.36804	-5.144 67	1.5	0.1359	0.8641	4.50216	-5.20167	3.3
0.3756	0.0447	5.51323	-5.169 10	0.46	0.1138	0.5655	4.99207	-5.616 30	2.6
0.3267	0.0000	5.57122	-4.990 32	0.88	0.0871	0.4011	5.19242	-5.468 26	1.3
0.5860	0.4140	4.92583	-5.252 93	1.7	0.0732	0.2915	5.30911	-5.28281	2.6
0.4554	0.2595	5.12768	-5.113 33	1.1	0.0599	0.2083	5.44469	-5.240 81	1.6
0.3692	0.1647	5.34019	-5.223 77	1.3	0.0549	0.1459	5.54650	-5.18854	1.6
0.3198	0.0850	5.41466	-4.95450	0.64	0.0457	0.0971	5.61512	-5.077 14	1.3
0.2755	0.0405	5.50485	-4.902 31	0.42	0.0393	0.0590	5.74331	-5.23175	1.2
0.2432	0.0000	5.58125	-4.831 08	1.2	0.0366	0.0265	5.73099	-4.955 29	1.5
0.4855	0.5145	4.84780	-5.30554	1.0	0.0346	0.0000	5.80044	-4.95767	0.99
0.3668	0.3273	5.13960	-5.336 92	0.87	0.0000	1.0000	4.27797	-4.854 66	0.66
0.3038	0.2193	5.24595	-5.075 04	0.44	0.0000	0.6756	5.04269	-6.208 92	2.6
0.2583	0.1388	5.43026	-5.183 76	1.4	0.0000	0.4792	5.15588	-5.549 68	2.4
0.2220	0.0816	5.48853	-4.973 40	0.82	0.0000	0.3494	5.28646	-5.423 72	2.5
0.1956	0.0360	5.59858	-4.99173	1.2	0.0000	0.2564	5.43443	-5.38393	1.3
0.1775	0.0000	5.64428	-4.851 54	0.93	0.0000	0.1865	5.64779	-5.670 91	1.1
0.3776	0.6224	4.90262	-5.836 13	2.6	0.0000	0.1327	5.54766	-4.968 63	1.4
0.2889	0.4101	5.08566	-5.427 22	1.6	0.0000	0.0892	5.96653	-6.20708	0.62
0.2367	0.2797	5.23869	-5.250 90	1.5	0.0000	0.0545			
0.1970	0.1873	5.37150	-5.143 07	1.4	0.0000	0.0249	5.88864	-5.375 66	0.36
0.1694	0.1189	5.47483	-5.038 03	1.1	0.0000	0.0000	5.69988	-4.493 23	0.96

Results and Discussion

Table I shows the ternary composition (mole fraction) and the experimental ϵ values measured for 66 mixtures at 5
different temperatures ranging from 30 to $50^{\circ} \mathrm{C}$, at $5^{\circ} \mathrm{C}$ intervals. It should be noted that Table I is lacking of some ϵ values because the high conductivity of the corresponding

Table III. Coefficients and Average Deviations ($\overline{\Delta \varepsilon}$) of Equation 4 for Ethane-1,2-diol + 2-Methoxyethanol + Water

$t /{ }^{\circ} \mathrm{C}$	$a_{1} \times 10$	$a_{2} \times 10$	$b_{1} \times 10$	$b_{2} \times 10$	$\overline{\Delta \epsilon}$
30	5.34227	3.82733	1.44327	1.37106	0.28
35	5.41968	3.84257	1.47279	1.39625	0.25
40	5.44730	3.92271	1.49237	1.43808	0.27
45	5.54216	3.82133	1.52849	1.43061	0.23
50	5.61766	3.90476	1.56193	1.47769	0.26

$\mathrm{ME}+\mathrm{W}$ binary mixtures in the rich water region.
The dependence of ϵ on the temperature has been checked by the equation

$$
\begin{equation*}
\ln \epsilon=\alpha_{0}+\alpha_{1}(T / \mathrm{K}) \tag{1}
\end{equation*}
$$

whose α_{i} coefficients are listed in Table II. This equation reproduces the experimental values within an average deviation, evaluated as following:

$$
\begin{equation*}
\overline{\Delta \epsilon}=(1 / N) \sum_{N}\left|\epsilon_{\text {calcd }}-\epsilon_{\text {exptu }}\right| \tag{2}
\end{equation*}
$$

where N is the number of experimental points; $\overline{\Delta \epsilon}= \pm 0.03$.
In an attempt to establish the dependence $\epsilon=\epsilon(x)$ for binary mixtures, King and Queen (11) employed a rational function like this one:

$$
\begin{equation*}
\ln \epsilon=\frac{1+a_{1} x_{1}}{\left(\ln \epsilon_{2}\right)^{-1}+b_{1} x_{1}} \tag{3}
\end{equation*}
$$

which is known as one form of the reciprocal Pade approximant (11), the constants $a_{0}=1$ and $b_{0}=\left(\ln \epsilon_{2}\right)^{-1}$ being employed. It is noteworthy that eq 3 needs only two adjustable parameters, i.e., a_{1} and b_{1}, to fit any set of binary data. Now, the use of eq 3 has been extended to this ternary solvent system in the form

$$
\begin{equation*}
\ln \epsilon=\frac{1+a_{1} x_{1}+a_{2} x_{2}}{\left(\sum_{i=1}^{3} x_{i} \ln \epsilon_{i}\right)^{-1}+b_{1} x_{1}+b_{2} x_{2}} \tag{4}
\end{equation*}
$$

where ϵ_{i} are the dielectric constants of the pure species, and the other symbols have their usual significance. The isothermal fitting coefficients a_{i} and b_{i} of eq 4 are summarized in Table III, along with the average uncertainty $\overline{\Delta \epsilon}$ at each temperature. The overall average deviation $\overline{\Delta \epsilon}$ for this correlation procedure is equal to ± 0.26. Figure 1 shows the plot of eq 4 for ϵ values at $40^{\circ} \mathrm{C}$.

In order to quicken the interpolation procedures, eq 1 and 4 could be combined to provide a general relation of the type $\epsilon=\epsilon\left(T, x_{1}, x_{2}, x_{3}\right)$ and that may be explicated in the form

$$
\ln \epsilon=\frac{\sum_{h=0}^{1} \sum_{k=0}^{1} \sum_{i=0}^{1} \gamma_{h k l}(T / K)^{h} x_{1}^{k} x_{2}^{l}}{\left(\sum_{i=1}^{3} x_{i} \ln \epsilon_{i}\right)^{-1}+\delta_{1} x_{1}+\delta_{2} x_{2}} \text { with } k+l=0,1
$$

This equation, whose coefficients are listed in Table IV, fits the experimental ϵ values of Table I within $\overline{\Delta \epsilon}= \pm 0.24$.

Kolling (12) suggested a suitable relation to evaluate the deviation from a mole fraction average of the dielectric constant ($\delta \epsilon$) for a binary mixture. On the basis of those argumentations, the equation has now been extended to the

Figure 1. Computer-generated $\epsilon-x_{i}$ surface for the ED (1) + ME (2) $+\mathrm{W}(3)$ ternary solvent system at $40^{\circ} \mathrm{C}$.

Table IV. Coefficients of Equation 5 for Ethane-1,2-diol (1) + 2-Methoxyethanol (2) + Water (3)

variable symbol quantity			coefficient	symbolvariable quantity			coefficient
γ_{000}		1.01858	γ_{110}	$T x_{1} / K$	-6.37563×10^{-4}		
γ_{010}	x_{1}	6.82482×10^{-1}	γ_{101}	$T x_{2} / K$	-1.08252×10^{-9}		
γ_{001}	x_{2}	6.96894×10^{-1}	δ_{1}	x_{1}	1.31130×10^{-1}		
γ_{100}	T / K	-7.04715×10^{-6}	δ_{2}	x_{2}	1.30775×10^{-1}		

ternary mixtures of this work in the form

$$
\begin{equation*}
\delta \epsilon=\epsilon-\sum_{i=1}^{3} x_{i} \epsilon_{i} \tag{6}
\end{equation*}
$$

In the literature it has been suggested that for $\delta \epsilon>|5|$ we are in the presence of strong interactions, of any kind, which take place between components. In the case of this ternary solvent system and taking into account the molecular properties of the selected components, it is probable that the hydrogen bond formation could be the prevailing interaction pattern between like and/or unlike species. For the ternaries investigated, $\delta \epsilon$ is always negative and ranges from -0.81 to - 17.48 in the limits of the investigated temperatures.

In order to confirm the presence in these mixtures of threecomponent stable adducts, we have followed the suggestions provided by other researchers $(13,14)$, and the $\delta \epsilon$ values were isothermally fitted to an equation of the type

$$
\begin{align*}
& \delta \epsilon=d_{0} x_{1} x_{2}+d_{1} x_{2} x_{3}+d_{2} x_{1} x_{3}+d_{3} x_{1} x_{2}\left(x_{2}-x_{1}\right)+ \\
& d_{4} x_{2} x_{3}\left(x_{3}-x_{2}\right)+d_{5} x_{1} x_{3}\left(x_{3}-x_{1}\right)+d_{6} x_{1} x_{2} x_{3} \tag{7}
\end{align*}
$$

whose adjustable coefficients d_{i} are listed in Table V. A similar equation, derived from the Redlich-Kister one (15), was used by Pedrosa et al. (16) to fit other thermomechanical excess properties, and on this work we have extended its use to the $\delta \epsilon$ quantity too. It should be noted that eq 7 mainly represents the $\delta \epsilon$ quantity for a ternary system as a sum of contributions

Table V. Coefficients d_{l} and Standard Deviations $\sigma(\delta \epsilon)$ of Equation 7 for Ethane-1,2-diol + 2-Methozyethanol + Water

$t /{ }^{\circ} \mathrm{C}$	d_{0}	d_{1}	d_{2}	d_{3}	d_{4}	d_{5}	d_{6}	$10 \sigma(\delta \epsilon)$
30	-10.39	-66.03	-27.79	-0.07	-46.64	-10.04	42.57	7.8
35	-10.32	-64.96	-27.19	-1.11	-45.41	-11.27	40.11	7.3
40	-10.30	-64.19	-27.23	-0.62	-45.12	-10.55	42.41	7.8
45	-10.32	-63.60	-26.86	-1.25	-41.35	-12.17	4.72	6.0
50	-10.30	-63.01	-26.79	-0.66	-40.67	-12.28	43.30	6.5

Figure 2. Pictorial view of the $\delta \epsilon$-composition $\left(x_{i}\right)$ surface for the $\mathrm{ED}(1)+\mathrm{ME}(2)+\mathrm{W}$ (3) ternary solvent system at $40^{\circ} \mathrm{C}$.

Figure 3. Computer-generated contour diagram showing lines of constant $\delta \epsilon$ on a liquid mole fraction grid for ED (1) $+\mathrm{ME}(2)+\mathrm{W}(3)$ at $40^{\circ} \mathrm{C}$.
relative to the three binary subsystems, the overall ternary mixing effects being contained in the d_{6} term only. Equation 7 reproduces the experimental data to within $\overline{\Delta(\delta \epsilon)}= \pm 0.41$.

Furthermore, the $\delta \epsilon$ function has been plotted, at each investigated temperature, in the ternary domain $\left[x_{1}, x_{2}, x_{3}\right]$, and the results at $40^{\circ} \mathrm{C}$ are displayed in Figures 2 and 3. A careful examination of these figures shows that no stable threecomponent adducts are formed in these nonelectrolytic solutions, any relative minimum in the ternary domain being absent. However, as one can see from Figure 4, it is possible

Figure 4. Trend of ϵ^{E} vs the mole fraction x_{i} of binary syatems at $40^{\circ} \mathrm{C}:(\Delta) \mathrm{ED}+\mathrm{ME}$ vs $x_{\mathrm{ME}} ;(\bullet) \mathrm{ED}+\mathrm{W}$ vs x_{W}; (${ }^{(\boldsymbol{*})} \mathrm{ME}$ +W vs x_{w}.
to deduce that probably binary adducts may be formed through specific solvent-cosolvent interactions by hydrogen bondings or dipolar interactions; in particular the most stable moiety should be constituted by ME and W, at the stoichiometric ratio ME:W = 1:2 at all the investigated temperatures.

Acknowledgment

The authors gratefully acknowledge Professor C. Preti for helpful suggestions and discussion on this work, and Hospal Dasco spa (Modena, Italy) for awarding a Junior Research Fellowship to L.M.

Literature Cited

(1) Frölich, H. Theory of Dielectrics; Clarendon Press: Oxford, U.K., 1958.
(2) Hill, N. E. Dielectric Properties and Molecular Behavior; T. M. Sugden: London, 1969.
(3) Eyring, H.; John, M. S. Significant Liquid Structure; John Wiley \& Sons: New York, 1969.
(4) Payne, R.; Theodorou, I. J. Phys. Chem. 1972, 76, 2892.
(5) Raymond, R. Bull. Soc. Chim. Fr. 1972, 532.
(6) Franchini, G. C.; Marchetti, A.; Tassi, L.; Tosi, G. J. Chem. Soc., Faraday Trans. 1 1988, 84, 4427.
(7) Franchini, G. C.; Marchetti, A.; Preti, C.; Tassi, L.; Tosi, G.J.Chem. Soc., Faraday Trans. 1 1989, 85, 1697.
(8) Marchetti, A.; Picchioni, E.; Tassi, L.; Tosi, G. Anal. Chem. 1989, 61, 1971.
(9) Franchini, G. C.; Marchetti, A.;'Tassi, L.; Tosi, G. Anal. Chem. 1990, 62, 1004.
(10) Maryott, A. A.; Smith, E. R. Table of Dielectric Constant of Pure Liquids; National Bureau of Standards Circular No. 514; U.S. Government Printing Office: Washington, DC, 1951.
(11) King, M.; Queen, N. J. Chem. Eng. Data 1979, 24, 178.
(12) Kolling, O. W. Anal. Chem. 1985, 57, 1721.
(13) Fort, R. J.; Moore, W. R. Trans. Faraday Soc. 1966, 62, 1112.
(14) Fialkov, Yu. Ya. Zh. Fiz. Khim. 1963, 37, 1051.
(15) Redlich, O.; Kister, A. T. Ind. Eng. Chem. 1948, 40, 341.
(16) Pedroea, G. C.; Salas, J. A.; Katz, M. Thermochim. Acta 1990, 160, 243.

Received for review January 8, 1993. Revised May 28, 1993. Accepted June 26, 1993.* The Consiglio Nazionale delle Ricerche (CNR) of Italy is acknowledged for financial support.

[^0]
[^0]: - Abstract published in Advance ACS Abstracts, September 1, 1993.

